HPE ProLiant Rack and Tower Servers Hold Energy-Efficiency Leadership with Linux on the SPECpower_ssj2008 Benchmark

Energy-efficiency across form factors with HPE ProLiant ML and DL Gen10

Executive summary

The HPE ProLiant DL360, ProLiant DL380, and ProLiant ML350 Gen10 servers are the MOST energy-efficient 1U, 2U, and tower servers on Linux, respectively, on the SPECpower_ssj2008 benchmark. The servers were configured with Intel® Xeon® Scalable processors. These results are proof points that HPE provides its customers with energy-efficient optimized solutions across form factors and for multiple deployment scenarios.

HPE ProLiant superiority on Linux across rack and tower form factors!

#1 1U

HPE ProLiant DL360 Gen10
11,709 overall ssj_ops/watt

#1 2U

HPE ProLiant DL380 Gen10
11,540 overall ssj_ops/watt

#1 tower

HPE ProLiant ML350 Gen10
10,916 overall ssj_ops/watt

Customer value with HPE ProLiant DL and ML servers

HPE ProLiant DL360 Gen10 server provides security, agility, and flexibility without compromise. With the added performance brought by 3.0 TB of memory, 12 NVDIMMs, and 10 NVMe drives, the HPE ProLiant DL360 Gen10 means business.

HPE ProLiant DL380 Gen10 server is adaptable for diverse workloads and environments. The secure 2P, 2U server delivers world-class performance with the right balance of expandability and scalability, with support for up to 3.0 TB of memory and 30 Small Form Factor (SFF), 19 Large form factor (LFF), or 20 direct attached NVMe drives.

HPE ProLiant ML350 Gen10 server is a secure dual-socket tower platform with performance, expandability, and proven reliability. With support for up to 3.0 TB of memory and 24 SFF drives, it is an excellent choice for expanding SMBs, remote offices of larger businesses, and enterprise data centers.

About the SPECpower_ssj2008 benchmark

The SPECpower_ssj2008 benchmark is the first industry-standard benchmark that evaluates the power and performance characteristics of single server and multi-node servers. It is used to compare power and performance among different servers and serves as a toolset for use in improving server efficiency.

Source: spec.org/power_ssj2008/